

Sustainable fruit production: thinning, and water&nutrients

Research Station for fruit, Pomology department Serge Remy, Wim Verjans, Hilde Schoofs, Tom Deckers

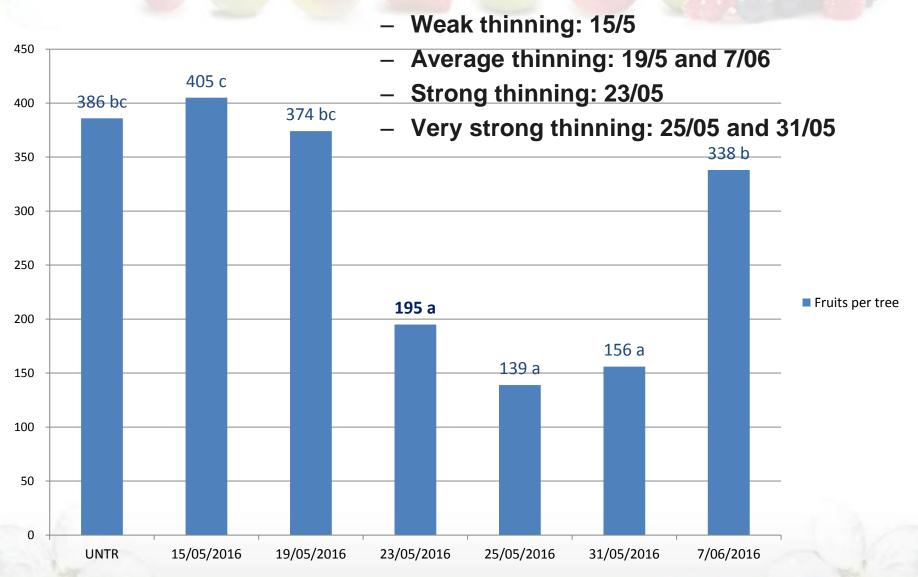
Miet Boonen (Experimental Garden Small Fruits)

Eufruit International Expert Group Sustainable Fruit (WP5) 31 May – 1 June 2017, Bologna, Italy

Proefcentrum Fruitteelt vzw Fruittuinweg 1, B-3800 Sint-Truiden – 0032 (0)11 69 71 50 – serge,remy@pcfruit.be

Overview

- Thinning with Brevis in apple 2016: application time trial & dose response trials
- 2. Thinning advice 2017: impact of the frost damage
- 3. Extensions of PWARO service system for irrigation&fertigation
- 4. Nitrogen reduction project in pear
- 5. Fertigation and irrigation in strawberry
- 6. Strengthening of blackberry fruit skin by adjusting fertigation


Thinning with Brevis in 'Golden Delicious': application time trial 2016

	Object ('Golden Delicious')					
Application time	15/5	19/5	23/5	25/5	31/5	7/6
Brevis dose (kg/ha)	1,65	1,65	1,65	1,65	1,65	1,65
Actual fruitlet diameter (mm) 2 yow (diameter range)	7,1 (6-8)	9,1 (8-10)	11 (10-12)	12,2 (12-14)	15,4 (14-16)	18,7 (16-18)

- 11 years old trees; 3,5 x 1,5 m; tree height of 3,2 m
- No pollinator
- Number of flower clusters 2016 : 250-300 per tree
- 1000 L water/ha
- 4 replicates of 6 trees (4 netto trees), 7 objects incl. untreated control

Thinning with Brevis in 'Golden Delicious': application time trial 2016

Dose response trials with Brevis

- 'Gala', 'Elstar', 'Fuji', 'Braeburn', 'Pink Lady'
- 3,5 x 1,5 m; tree height of 2,8 m
- Pollinators (12 varieties)
- 1000 L water/ha
- 4 replicates of 2 trees, 5 objects (1,1 kg; 1,65 kg and 2,2 kg/ha standard orchard at 8 mm; 2,2 kg/ha SO at 12-14 mm; untreated control)

	'Pink Lady'	'Braeburn'	'Gala'	`Elstar '	'Fuji'
8 mm	15/05/2016	17/05/2016	19/05/2016	19/05/2016	19/05/2016
12-14 mm	25/05/2016	25/05/2016	25/05/2016	25/05/2016	25/05/2016

Dose response trials with Brevis

- All cultivars show a clear dose response: number of fruits per tree and kg per tree decrease whereas average fruit weight increases with increasing Brevis dose
- All cultivars except 'Elstar' show overthinning using 2,2 kg /ha on 25/05/2016 (12-14 mm)
- Effect of fruit size at time of application (2 year old wood)
 - In most years strongest thinning occurs at 12-14 mm (depending on climatological conditions): probably the naturally occurring carbon deficiency in the tree is strongest at this fruit size (natural June drop involves mainly fruits of 12-16 mm)
 - Broad range of application between 8 and 16 mm fruit size,
 sometimes even later, but risk of no effect in some years
 - Earlier applications at 8 mm are usually not successful for thinning

Thinning advice for 2017

- Taking frost damage and effect of gibberellins into account:
 no Brevis because is it has a stronger effect on fruits without
 seeds (parthenocarpic)
- Pear: no chemical thinning unless 6-BA (8-10 mm) for weak thinning if fruit set is good and temperature sufficient for application (min 18°C), has positive effect on number of flower clusters next year
- Apple: no thinning unless diploid cultivars and fruit set is good; use 6-BA
- Await the end of June drop and if necessary apply (quality) hand thinning

PWARO service system for irrigation and fertigation

- Individual irrigation/fertigation advise (minimal input of water and nutrients)
- For pear and sweet cherry (first extension since 2017) growers
- At orchard level
- Demonstration : <u>www.pwaro.be</u>

PWARO advise

MEASUREMENTS

- Soil samples: volumetric water content together with pF curve
- Water potential measurements of the leaf

INPUT soil water balance model

- Info on soil and crop
- Weather forecast
- Weather observations (temperature min & max, radiance hrs of sunshine and of degree clouding, relative humidity, wind velocity, topographic height – latitude)
- Precipitation and amount of irrigation
- Evapotranspiration based on ET₀ or reference evapotranspiration
 [mm/dag] (the maximum evapotranspiration of a healthy lawn (grass) of
 12 cm high, optimal water and nutrients) and a crop factor

Example calculation PWARO advise

- $ET_0 = 3.5 \text{ mm/m}^2/\text{day}$
- Tree = $\pm 3 \text{ m}^2$
- Evapotranspiration per tree = 3,5*3 = 10,5 mm or I/day/tree
- Irrigation, amount of water per drip point = 2 l/h
- Distance between drip points = 0,5 m

 2,5 drip

 Distance in the row = 1.25 m

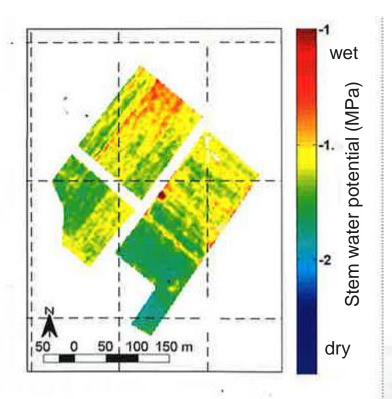
 points/tree
- Distance in the row = 1,25 m

5 l/tree/h

Irrigate for ±2 h

PWARO support by satellite image analysis (second extension)

 PWARO: soil samples for measuring volumetric water content are taken in one central reference zone of the orchard, but often large variation in soil and trees within an orchard


Past research: satellite image (Worldview) analysis can reveal

water status in the orchard

 And water status is strongly linked with pear size

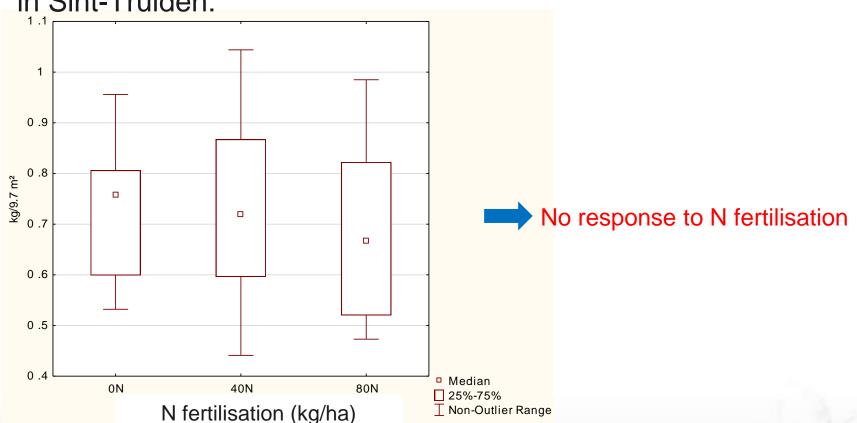
- Optimal reference zone
- Variable irrigation
- Better planning of root pruning

PWARO support by satellite image analysis for irrigation management

- Sentinel-2 satellite images (ESA): resolution 10 m, image every 5 days, large archive of historic images
- NDVI index variation in biomass
- ReNVDI (Red Edge) index: strong correlation with stem water potential and thus with drought stress

Careful interpretation together with the grower to verify possible causes of the variations seen in the satellite images!

Nitrogen reduction project in pear



- Leaching of nitrogen (N) into surface and ground water remains above the limit (50 mg/L) in some measuring points in Belgium despite efforts by the farmers
- Goal project (2017-2019)? Reduction of N fertilisation in pear by more controlled fertilisation using fertigation and a reduction of the total amount of N, but maintaining yield and fruit quality
- Demonstration project in grower's orchards, two orchards (one in sandy loam soil and other in loam soil in the province Limburg)
- Three objects: (i) standard N fertilisation scheme of the grower, (ii) 20% less N fertilisation and (iii) 40% less N fertilisation whereby in the last two objects controlled fertigation (RDI) is done in the summer to achieve the reduced amounts
- Measure yield, grading, fruit quality (firmness, brix, starch, acidity)

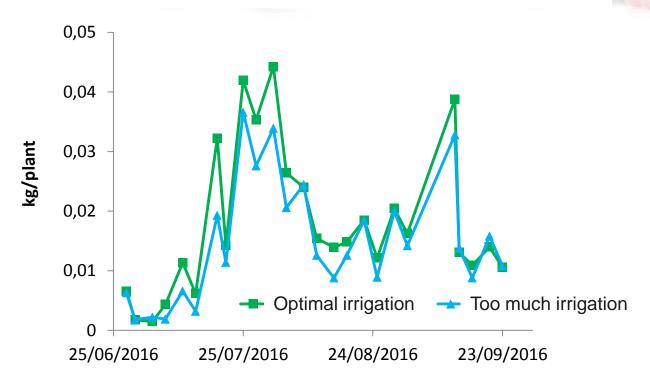
Fertigation and irrigation in strawberry

 How important is nitrogen (N) fertilisation for strawberry production?

'Elsanta' trial 2014 (planting) – 2015 (3 different N fertigation levels)
in Sint-Truiden:

Fertigation and irrigation in strawberry

Can N mineralisation in the soil explain the lack of response to N fertilisation?


Everbearer trial: 'Portola' in Sint-Truiden 2016 (planted mid April)

NO₃- N level measured (no plants; irrigated)

Date sampling	NO ₃ -N (0-30 cm) (kg/ha)
18/04/2016	47
13/05/2016	77
15/06/2016	129
1/08/2016	79
21/09/2016	75

Fertigation and irrigation in strawberry

- Excessive irrigation does not result in higher yield!
- Similar to PWARO for pears, a service system for irrigation and fertigation in strawberry is set up by Research Station for Fruit (pcfruit), Soil Service Belgium, Research Station for Strawberry Hoogstraten and University of Leuven

Adjusting blackberry fruit skin by modification of fertigation

- Blackberry fruit skin ruptures easily
- Hypothesis: weak cell walls due to low Ca level
- Solution? Increase Ca level in berries by increasing Ca concentration in fertigation solution
- Trials: 'Kwanza' in pots in greenhouse

Growth stage

K/Ca higher

	EC	1.7
	рН	5.5
mM	NH ₄	1.5
mM	K	3.6
mM	Ca	3.9
mM	Mg	2.25
mM	NO ₃	12.6
mM	Cl	0.0
mM	SO ₄	1.6
mM	Р	1.6
mM	Si	0.0
	Ca/K	1.08
	Ca/Mg	1.73
	K/Ca	0.92

<
>
<
>

	EC	2.5
	рН	5.5
mM	NH ₄	2.0
mM	K	3.0
mM	Ca	4.25
mM	Mg	1.75
mM	NO ₃	12.9
mM	Cl	0.0
mM	50 ₄	1.5
mM	Р	1.1
mM	Si	0.0
	Ca/K	1.42
	Ca/Mg	2.43
	K/Ca	0.71

K/Ca lower

Near harvest

K/Ca higher

EC	1.6
рН	5.5
NH ₄	0.0
K	4.2
Ca	3.7
Mg	2.2
NO ₃	11.5
Cl	0.0
SO ₄	1.5
Р	1.5
Si	0.0
Ca/K	0.88
Ca/Mg	1.68
K/Ca	1.14
	pH NH ₄ K Ca Mg NO ₃ Cl SO ₄ P Si Ca/K Ca/Mg

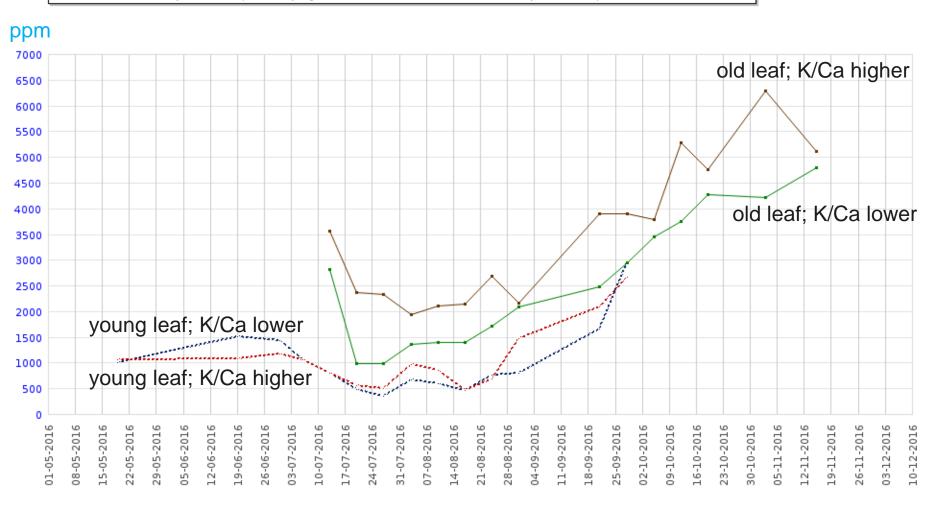
^ / /

	EC	1.6
	рН	5.5
mM	NH ₄	0.0
mM	K	3.5
mM	Ca	4.5
mM	Mg	1.75
mM	NO ₃	11.75
mM	Cl	0.0
mM	50 ₄	1.5
mM	Р	1.25
mM	Si	0.0
	Ca/K	1.29
	Ca/Mg	2.57
	K/Ca	0.78

K/Ca lower

Leaf mineral analysis

	% DM					
	N	Р	K	Ca	Mg	S
K/Ca higher	3-37	0.371	2.27	1.20	0.451	0.11
K/Ca lower	3.28	0.328	2.13	1.12	0.425	0.13



No differences in leaf mineral composition

Time course study of minerals by sap analysis

Calcium

- 🔹 1 HFB Kwanza Obj 1 Plantsap Blad (jong) Ca Calci... 🖶 1 HFB Kwanza Obj 1 Plantsap Blad (oud) Ca Calciu...
- 💌 1 HFB Kwanza Obj 8 Plantsap Blad (jong) Ca Calci... 📲 1 HFB Kwanza Obj 8 Plantsap Blad (oud) Ca Calciu...

Difficult to interpret

Thank you for your attention! Contact Information

Chairman General director Administrative dir.

Zoology Mycology Pomology Environment & Technology

Pip and stone fruit Small fruits

Advisory

inge.moors@limburg.be dany.bylemans@pcfruit.be andre.deroose@pcfruit.be

tim.belien@pcfruit.be wendy.vanhemelrijck@pcfruit.be serge.remy@pcfruit.be kim.koopmans@pcfruit.be kris.ruysen@pcfruit.be

jef.vercammen@pcfruit.be miet.boonen@pcfruit.be

tessa.debaets@pcfruit.be

Research Center for Fruit Fruittuinweg 1 B-3800 Sint-Truiden 0032 (0)11 69 70 80 www.pcfruit.be pcfruit@pcfruit.be