

Synthesis report Sustainable fruit production to minimize residues

Editor: ZAVAGLI Franziska	a, Ctifl, zavagli@ctifl.fr, 00/33.5.53.58.13.10
Editor partner affiliation:	Centre technique interprofessionnel des Fruits et Légumes (3, Ctifl)
	22 rue Bergère, 75009 Paris, www.ctifl.fr, 00/33/1.47.70.16.93
WP:	Reduction in pesticide residues
IEG thematic area:	minimal pesticides input, alternative technologies, prediction tools, spray technologies
Covered NUTS 3 regions:	
Country	Regions (NUTS 3 REGIONS)
Denmark	DK011 (Copenhagen), DK012 (Copenhagen and its environs), DK013 (North Zealand), DK014 (Bornholm), DK021 (East Zealand), DK022 (West - and South Zealand), DK031 (Funen), DK032 (South Jutland), DK041 (West Jutland), DK042 (East Jutland), DK050 (North Jutland).
Belgium	BE211 Arr. Antwerpen - BE212 Arr. Mechelen - BE213 Arr. Turnhout- BE221 Arr. Hasselt - BE222 Arr. Maaseik - BE223 Arr. Tongeren - BE231 Arr. Aalst - BE232 Arr. Dendermonde - BE233 Arr. Eeklo - BE234 Arr. Gent - BE235 Arr. Oudenaarde - BE236 Arr. Sint-Niklaas - BE241 Arr. Halle-Vilvoorde - BE242 Arr. Leuven - BE251 Arr. Brugge - BE252 Arr. Diksmuide - BE253 Arr. leper - BE254 Arr. Kortrijk - BE255 Arr. Oostende - BE256 Arr. Roeselare - BE257 Arr. Tielt - BE258 Arr. Veurne - BE310 Arr. Nivelles - BE331 Arr. Huy - BE332 Arr. Liège - BE334 Arr. Waremme - BE335 Verviers
France	FR211 Ardennes, FR241 Cher, FR244 Indre-et-Loire, FR246 Loiret, FR301 Nord, FR302 Pas-de-Calais, FR411 Meurthe-et-Moselle, FR412 Meuse, FR413 Moselle, FR414 Vosges, FR421 Bas-Rhin, FR422 Haut-Rhin, FR432 Jura, FR433 Haute-Saône, FR511 Loire-Atlantique, FR512 Maine-et-Loire, FR514 Sarthe, FR515 Vendée, FR532 Charente-Maritime, FR533 Deux-Sèvres, FR534 Vienne, FR611 Dordogne, FR614 Lot-et-Garonne, FR615 Pyrénées-Atlantiques, FR623 Haute-Garonne, FR628 Tarn-et-Garonne, FR631 Corrèze, FR632 Creuse, FR633 Haute-Vienne, FR712 Ardèche, FR713 Drôme, FR714 Isère, FR716 Rhône, FR717 Savoie, FR718 Haute-Savoie, FR721 Allier, FR722 Cantal, FR723 Haute-Loire, FR811 Aude, FR812 Gard, FR813 Hérault, FR815 Pyrénées-Orientales, FR821 Alpes-de-Haute-Provence, FR822 Hautes-Alpes, FR823 Alpes-Maritimes, FR824 Bouches-du-Rhône, FR825 Var, FR826 Vaucluse, FR831 Corse-du-Sud, FR832 Haute-Corse
Germany	DE600 Hamburg; DE932 Cuxhaven; DE933 Harburg; DE939 Stade; DEF09 Pinneberg, DE9 (Niedersachsen); DE8 (Mecklenburg-Vorpommern); DEF0 (Schleswig-Holstein); DEE0 (Sachsen-Anhalt); DEA (Nordrhein-Westfalen)
Netherlands	NL230 Flevoland; NL310 Utrecht; NL321 Kop van Noord-Holland; NL338 Oost-Zuid-Holland; NL341 Zeeuwsch-Vlaanderen; NL342 Overig Zeeland; NL411 West-Noord-Brabant; NL412 Midden-Noord-Brabant; NL422 Midden-Limburg; NL423 Zuid-Limburg.

Spain	ES 512 Girona, ES513 Lleida							
Switzerland	CH011 Vaud, CH012 Valais, CH021 Bern, CH022 Fribourg, CH023 Solothurn, CH024 Neuchâtel, CH025 Jura, CH032 Basel-Landschaft, CH033 Aargau, CH040 Zürich, CH052 Schaffhausen, CH055 St. Gallen, CH056 Graubünden, CH057 Thurgau, CH061 Luzern, CH063 Schwyz, CH066 Zug, CH070 Ticino							
Italy	ITH10 Bozen-Bolzano, ITH54 Modena, ITH55 Ferrara, ITH57 Ravenna, ITH58 Forlì-Cesena, ITH59 Rimini, ITD20 Trentino-Alto Adige							
Romania	RO111 Bihor, RO112 Bistrița-Năsăud, RO113 Cluj, RO114 Maramureș, RO115 Satu Mare, RO116 Sălaj, RO121 Alba, RO122 Brașov, RO123 Covasna, RO124 Harghita, RO125 Mureș, RO126 Sibiu, RO211 Bacău, RO212 Botoșani, RO213 Iași, RO214 Neamț, RO215 Suceava, RO216 Vaslui, RO221 Brăila, RO222 Buzău, RO223 Constanța, RO224 Galați, RO225 Tulcea, RO226 Vrancea, RO311 Argeș, RO312 Călărași, RO313 Dâmbovița, RO314 Giurgiu, RO315 Ialomița, RO316 Prahova, RO317 Telorman, RO321 București, RO322 Ilfov, RO411 Dolj, RO412 Gorj, RO413 Mehedinți, RO414 Olt, RO415 Vâlcea, RO421 Arad, RO422 Caraș-Severin, RO423 Hunedoara, RO424 Timiș							
Lithuania	LT001 Alytaus apskritis, LT002 Kauno apskritis, LT003 Klaipėdos apskritis, LT004 Marijampolės apskritis, LT005 Panevėžio apskritis, LT006 Šiaulių apskritis, LT007 Tauragės apskritis, LT008 Telšių apskritis, LT009 Utenos apskritis, LT00A Vilniaus apskritis							
UK	UKG11 Herefordshire, UKG12, Worcestershire, UKH12 Cambridgeshire, UKH16 North and West Norfolk, UKH17 Breckland and South Norfolk, UKJ22 East Sussex, UKJ35 South Hampshire, UKJ36 Central Hampshire, UKJ37 North Hamphshire, UKJ41 Medway, UKJ43 Kent Thames Gateway, UKJ44 East Kent, UKJ45 Mid Kent, UKJ46 West Kent							
Sweden	SE224 Skåne län, SE123 Östergötlands län, SE221 Blekinge län, SE213 Kalmar, SE231 Halland, SE232 Västra Götaland							
Reporting period:	Y3 report due July 2018							
No. IEG members:	Total: 20 Male: 11 Female: 9							
Document history								
	Version no. Version date Description/changes Author (name and contact details)							

Document overview

IEG participants4
Synthesis findings7
Summary for EIP dissemination
Annex: Scanning reports

IEG participants

Name	Organization short name ¹	Address	Email	Phone	Type ²	Scanning included?	No. reports / organization
Marianne BERTELSEN	AU	Kirstinebjergvej 10 5792 Aarslev (Denmark)	Marianne.Bertelsen@food.au.dk	0045 8715 8328	Research institute	Yes	1
Wendy VAN HEMELRIJCK	Pcfruit	Fruittuinweg 1 3800 Sint-Truiden (Belgium)	wendy.vanhemelrijck@pcfruit.be	0032 11 69 71 20	Research institute	Yes	5
Franziska ZAVAGLI	Ctifl	Centre de Lanxade, 28 route des Nébouts, 24130 Prigonrieux (France)	zavagli@ctifl.fr	00/33/5.53.58.00.05	Research institute	Yes	3
Hinrich HOLTHUSEN	OVA	Dep. Plant Protection and Diagnostics. Moorende 53 - 21635 Jork (Germany)	hinrich.holthusen@lwk- niedersachsen.de	+49 4162 6016-131	Research institute	Yes	1
Marcel WENNEKER	StDLO	Lingewal 1, 6668 LA, Randwijk. (NL)	marcel.wenneker@wur.nl	00/31/488473745	Research institute	Yes	1
Peter Frans DE JONG	StDLO	Lingewal 1, 6668 LA, Randwijk. (NL)	peterfrans.dejong@wur.nl	00/31/488473745	Research institute	No	-
Mariano VILAJELIU	IRTA	IRTA-MAS BADIA. Canet de la Tallada. 17134 LA TALLADA D'EMPORDÀ (Spain)	mariano.vilajeliu@irta.cat	00/34/972.78.02.75	Research institute	Yes	1
Jordi CABREFIGA	IRTA	IRTA-MAS BADIA. Canet de la Tallada. 17134 LA TALLADA D'EMPORDÀ (Spain	jordi.cabrefiga@gmail.com	<u>????</u>	Research institute	No	-

¹ If an EUFRUIT project partner, use EUFRUIT partner short name, if a contributing organization designate a partner short name ² Farm holder/grower, advisor/consultant, research institute/RSO, SME, NGO or other

Andreas NAEF	Agroscope	Federal Department of Economic Affairs, Education and Research EAER – Agroscope. Schloss 1. 8820 Wädenswil (Switzerland)	andreas.naef@agroscope.admin.ch	+41 58 460 62 57	Research institute	Yes	1
Markus KELDERER	Laimburg	VZ-Laimburg, Vadena, Laimburg 6 I- 39040 Ora (Italy)	Markus.Kelderer@provinz.bz.it	+39 0471 969662	Research institute	Yes	1
Beatrice Michaela IACOMI	USAMV	59 Mărăști bv.; 011464 Bucharest (Rumania)	b.iacomi@yahoo.fr	0040/21/3182564	Research institute	Yes	1
Ana Cornelia BUTCARU	USAMV	59 Mărăști bv.; 011464 Bucharest (Rumania)	anabutcaru@gmail.com	0040/21/3182564	Research institute	No	-
Elena MARDARE	USAMV	59 Mărăști bv.; 011464 Bucharest (Rumania)	elenamardare184@yahoo.com	<mark>????</mark>	Research institute	No	-
Alma VALIUSKAITE	LRCAF	Instituto al. 1; Akademija; LT-58344, Kedainiai distr. Lithuania	a.valiuskaite@lsdi.lt	+37037555217	Research institute	Yes	1
Philippe BINARD	FRESHFEL	Rue de Trèves 49-51 1040 Brussels (Belgium)	philippe@freshfel.org	+32 2 777 15 80	NGO or other	No	-
Helene DERUWE	FRESHFEL	Rue de Trèves 49-51 1040 Brussels (Belgium)	helene@freshfel.org	+32 2 777 15 80	NGO or other	No	-
Daniel BRAY	UoG	Natural Resources Institute, UoG at Medway, Chatham Maritime, Kent ME4 4TB (UK)	D.Bray@greenwich.ac.uk	+44 1634 883729	Research institute	Yes	1

Christina SCHEER	КОВ	Schuhmacherhof 6, 88213 Ravensburg (Germany)	scheer@kob-bavendorf.de	0049 751 7903 306	Research institute	Yes	1
Francesco SPINELLI	UNIBO	DipSA – Dept. Ag. Sciences, V.le Fanin 44, 40127 Bologna. (Italy)	Francesco.spinelli3@unibo.it	+39 051 2088704	Research institute	Yes	3
Christelle LACROIX	INRA	Unité de pathologie des plantes, INRA PACA, Domaine Saint Maurice, 67 allée des chênes CS 60094, 84143 Montfavet (France)	Christelle.lacroix@inra.fr	0033-432722885	Research institute	Yes	1

Synthesis findings

In the EUFRUIT project, WP3 is focusing on the reduction of pesticide residues on fruits and in the environment by using alternatives to chemical protection against pest sand diseases, developing strategies to limit the negative incidences of pesticides and adopting new spraying technologies. The following document is the third synthesis report of the IEG composed by members of the EUFRIN WG "Sustainable fruit production to minimize residues" and partners involved in the EUFRUIT project. The state of art has been done in eleven European countries (Belgium, Denmark, Germany, France, Italy, Lithuania, the Netherlands, Rumania, Spain, Switzerland, United Kingdom). The aim is to provide an overview on different alternatives techniques to pesticides which may already be used by the growers and others which are at an experimental stage. In 2018, eleven subjects were handled :

- 1) Biodiversity
- 2) Biological control (microorganisms, beneficial insects)
- 3) Cultural practices
- 4) Decision tools
- 5) Detection
- 6) Natural substances
- 7) Physical methods (mechanical, thermal, barriers, traps)
- 8) Plant resistance inducers
- 9) Semio-chemicals
- 10) Spray applications
- 11) System approach where different techniques to reduce the use of pesticides are combined

I. Biodiversity

Orchards offer opportunities to foster ecosystem services, but input reduction is challenging. The principle is : apply a much as possible "soft protection practices" (i.e. prefer non-chemical solutions, use pesticides only as "last" resort, avoid non selective pesticides) and develop a supervised plant diversity management to enhance conservation biocontrol and limit pest outbreak. **INRA Gotheron** in a pear project between 1995 and 2005 (South-Eastern France) elaborated a design of a multi-species hedgerow to increase pear psyllid (*Cacopsylla pyri* L). Three main points came out :

- 1) ban plants hosting quarantine or key pests and diseases of the orchard and surrounding crops.
- 2) selection of plants hosting a rich and/or abundant natural enemy complex.
- 3) provide natural enemies with habitat and food resources (pollen, nectar, alternative prey) all year round.

Beside these criteria, tree species have of course to be adapted to soil and climate conditions.

Biodiversity is also a central part of the plant health care strategies in organic farming. The EcoOrchard project contributes to the kowledge and experiences on Functional AgroBiodiversity (FAB) management both from practitioners and scientists. Laimburg Research Centre (Italy) is working on the performances of different seed mixtures and the impact a sowed flower strip in the middle of the tree rows can have on pests like rosy aphids and codling moths. Natural enemies were significantly more abundant on trees in the flower strip plots than in the control plots, but the reduction of damages in presence of beneficial insects remains low and the difference between the number of treatments in an orchard with flower strips and without is limited to one or two.

The gap to develop more biodiversity is about knowledge on the occurrence and biology of many natural predators. It is also necessary to adapt the practices to avoid negative incidences of the spray application on the beneficial insects. The AHDB project TF220 (UK) has explored the effects of pest control products on earwigs, who are generalist predators of pests in apples and pears. The conclusion is that it is unlikely that occasional spraying will have long term effects, but early summer applications have to be avoided.

II. Biological control

Microorganisms :

On fruits, only a few products are registered in Europe. For example : **Bacillus subtilis**, **Aureobasidium pullulans** may be used for the control of some fungal pathogens like powdery mildew or postharvest diseases (*Botrytis cinerea*, *Monilinia fructigena*, ...) or **granulovirus preparation** against codling moth or fruit tortrix. Further research is needed to identify new "alternative" solutions to chemical pesticides.

In Belgium (pcfruit, KU Leuven, ILVO) entomopathogenic fungi products (different *Beauveria bassiana* strains and *Metarhizium anisopliae*) were tested on thrips in strawberry. The best results were between 50 and 70 % efficacy, but others were less good. The inconvenient is that these products have to be sprayed multiple times in short interval.

To increase chances to apply biological control products at the right place for example against Fire blight on apple flowers, (bumble) bees may be of some help as **entomovector**. But the Belgian results showed that the visitation was limited because of the climate condition, and may be the low attractiveness of the species. A new approach will be to apply the biological control products with biological models and test *Osmia* sp. as a vector.

In packing houses, the idea is to apply biological control products **by nebulisation** to control storage diseases on apples. Pcfruit, KU Leuven, ILVO (Belgium) studied the distribution of the products in cold storage rooms and in paloxes. The application of biological control products by cold nebulisation is possible, but the tested products achieved max. 50-60 % efficacy against *Neofabraea* spp. An important point is, that fungicides sprayed in orchards may still have an impact on the biological control product applied on the fruits later.

As treatments close to harvest against storage diseases are a potential risk to have residues on apples, Agroscope (Switzerland) is working on **yeasts**, which have an antagonistic activity. The candidate *Metschnikowia pulcherrima* can be formulated and sprayed in field. The reduction of storage rot could be achieved with *M. pulcherima*, but in combination with fungicides applied 21 days before harvest.

Some **bacterial antagonists and lytic bacteriophages** against Fire blight, Xanthomonas, Pseudomonas, like *Bacillus spp.*, are already available, other are identified and tested (Pseudomonas fluorescens, Pantoea agglomerans, Pantoea vagans). Lactic acid bacteria are very promising.

Further experiments are needed to optimize biological control products in practice (i.e. coformulats to enhance persistence, and environmental fitness, shelf-life...)

Beneficial insects :

At AU-BIOS (Denmark) a pilot study has been conducted to explore the potential of using **wood ants** to reduce pests in apple orchards against winter moths and other caterpillars. The success was limited due to increased aphid's problems. Therefore, ants were offered a sugar solution to divert them from milking and protecting aphids. An interesting side effect was that ants may also use fungi (scab, *Monilia*) as a food source. This could be of potential interest.

Predator introduction, like Amblyseius andersoni, against spider mites (Tetranychus urticae), on cherries "under cover", at a rate of one sachet per 5 trees, give good results (UK project).

III. Cultural practices

Apple scab usually survives over winter under the trees, in the dead, infected leaves from the previous season. The fungus continues to live within the leaves during winter, forming small, flask-shaped bodies, in which spores (ascospores) develop. These ascospores mature in spring and are forcibly ejected during spring rains. They are contaminating new shoots, leaves and further on small fruits. **Cultural practices consist in crushing "infected" leaves** fallen on the soil to reduce primary inoculum. At the Copenhagen University (Denmark), work has been conducted over 4 years on a strategic watering of the soil with covered with scabbed leaves to release ascospores in dry periods. 25 to 40 % ascospores could be released, but a lot of water is needed and in fact, no reduction of scab and number of fungicides could be achieved.

IV. Decision tools

There are different type of tools :

- Warning systems for growers and advisory organisations based on observations, and models to predict infection risks of diseases and simulate pest development, but also their predators. The aim is to optimize treatments and apply them at the right moment.
- **Guidelines** to consider side-effects of plant protection products on beneficial insects.
- Systems for treatment management, like DOSA3D (Universitat de Lleida Spain), a tool which calculates the dose taking into account the tree dimensions and the leaf density.

V. Detection

A first step towards the **use of drones** equipped with spectral sensors for fire blight detection was achieved by identification and validation of suitable wavelengths (pcfruit – Belgium). However, the accuracy of 52-54% for correct identification of the tree status (healthy or infected) is not sufficient yet for practical implementation of the technique and warrants further improvement.

VI. Natural substances

In France, there a two types of alternative products to chemicals : the "biocontrol products" and the natural preparations "without danger". The biocontrol products are registered like pesticides and are divided in four groups. One of them contains products with natural substances coming from plants, animals, or minerals, like : pelargonic acid, eugenol, thymol, garlic extracts, clove oil, potassium bicarbonate, laminarin, potassium phosphonates, pyrethrins, sulphur. The natural preparations without danger are composed by base substances which are registered at European level, for example : *Equisetum arvense*, saccharose, *Salix cortex*, vinegar, ...These preparations should be made by the growers themselves (fermented plant extract, herb infusion, decoction, maceration).

More solutions are needed. They must be identified and tested in laboratory conditions and field. Furthermore, the registration of naturally occurring substances is difficult. Thus, the technical issues of the development of new substances are as important as the support for the registration of the substance.

To reduce the use of cupper against apple scab, potassium bicarbonate and sulphur or potassium bicarbonate and potassium silicate give good results (University of Bucarest – Romania). Obstbauzentrum Jork (Germany) tested a product, an ion salt form of pelargonic acid against apple sab, in greenhouse and open field. The results are similar or even better than the chemical or organic references. In Spain (IRTA), three basic substances (*Equisetum arvense* L, *Urtica* spp; and sodium hydrogen carbonate) and laminarin are under evaluation in the control of apple scab.

The institute of Horticulture LRCAF (Lithuania) is working on plants, which are grown under the conditions of Lithuanian climate. *Thymus vulgaris* and *Coriandrum sativum* essential oils were extracted from local material. They inhibit *Alternaria* and *Fusarium gramineraum*. A student thesis is carried out on i) the selection of plant extracts and essential oils from different plants (*Asteraceae*, *Alliaceae*, ...; ii) the evaluation of their antifungal effect on strawberry diseases.

In the European project DROPSA, chitosan, laminarin, essential oils, *Bacillus subtilis* QST713 and benzothiadiazole were evaluated in the control of quarantine diseases caused by *Xanthomonas arboricola pv. pruni* (peach), *Pseudomonas syringae pv. actinidiae* (kiwi) and *X. fragariae* (strawberry).

VII. Physical methods

Mechanical techniques :

Weed control in orchards becomes a major concern, because of the progressive exclusion of the glyphosate herbicide. **Mechanical weeding** is already practised in organic production, but new technologies are emerging. The important points are : to be able to work on the tree interspace, to have a good work speed, to be used on massive weed infestation and wet soil conditions. In future, new machines like the "GrassKiller" from Italy, working with high pressure (up to 1.250 bar) water and the "Electroherb" from Brasil, using high-frequency alternating current, may change weed management in orchards.

Hot water treatment :

There are two types of applications.

One is tested in orchards to **control weeds**. The temperature of the water goes up to 98°C, so the cost of the heating still hinders the general usage. KOB (Germany) showed in field trials several problems relayed to the high water quantity and the important time amount. Furthermore, economically this method was not satisfying. Another method with hot steam gave better results, but is still under investigation.

The second is already applied to **prevent apples form storage rots** (*Gloeosporium*). The treatment is applied quickly after harvest. The fruits are dipped in water by 48-50°C between 2 to 3 minutes and cold stored.

Traps :

Beside pheromones traps, other traps may attract insects with their colour or with food attractant like sugar, vinegar.

In case of apple sawfly, white seems to be the right colour. Wageningen (Netherland) is working on different type of traps, different type of "white" and different densities. The strategy is to prevent adults to come out of the soil, to catch away the adults and to prevent larvae to enter the soil.

Barriers :

• Rain covers :

Reduce the incidence of rain on the development of fungus and bacteria is the aim of a rain cover on the top of the trees. In practice, cherries are covered for a short time close to harvest to avoid fruit cracking. On apples and pears trials are going on at the University of Aarhus (Denmark), Ctifl (France), Laimburg (Italy), and with a new project, in Wageningen (Netherland). The main objective is to cover the whole season the orchard for apple scab protection, but also Gloeosporium. In Italy, but also in France, successful experiences have been achieved on kiwi against *Pseudomonas syringae pv. actinidae*.

After studying the technology on apples, the University of Aarhus (Denmark) had a three years trial on pears. Even if the light level is reduced by 30 %, no detrimental effects on yield, fruit size, colour and fruit quality was noticed. On the Conference variety the benefit is to have significantly greener fruit. The goal is to get organic production untreated. The main problem is the wind.

At Ctifl (France), there are two types of rain roofs : one is placed under the hail nets, the other is combined with the hail nets in order to form only one cover. The efficacy against apple scab depends on the type of rain cover, but the symptoms on shoots are reduced (between 2 for the combined solution and 20 % for the rain cover under the hailnets) and almost missing on fruits (less than 2 % in 2017). As a result of the "non treatments" under the rain covers, powdery mildew may develop. The strategy is to add a sulphur protection from March to the end of May. In 2017, Ctifl tested also the effect of two plant resistance inducers based on phosphonates, by spraying them one time a week in the same period as the sulphur. With these treatments, the apple scab on shoots was reduced to 3 %. But the rain covers seems to have a negative incidence on yield (quantity and colour). It was observed on an older orchard (Gala, 2004). After 4 years cover, the cumulated difference between the covered and uncovered parts of the orchards was 70 t/ha. On a younger orchard (Rosy Glow, 2014), the irrigation was adapted with two types of irrigation systems (drip irrigation and micro jet). Under rain cover, the micro jet gives less good results. Compared to micro jet in the not covered part, the differences are between 13 and 23 t/ha.

At Laimburg (Italy), the Keep in Touch[®] system provides a rainproof net on the upper part and an insect proof net on the lateral part. On Fuji, the maximum scab on shoots was around 8 % (in that case, the rain covers was opened at the beginning of April) and on fruits it was less than 1 % (end of the primary infection period and at harvest). On Cripps Pink, the rain covers seems to reduce *Alternaria* when opened in August, but against *Marsonina* leaf blotch, no effect could be seen. To study the efficacy against *Gloeosporium*, the system was opened in July or August on Pinova and in August on Rosy Glow, the % of affected fruits were significantly reduced for Pinova when covered in July and for Rosy Glow. The thinning effect of the cover system was important on Fuji when opened before flowering and during flowering (up to 60-65 %).

Further research is needed to understand the mechanism of the protection under plastic tunnels against apple scab and *Gloeosporium*; the effect of plastic on other pathogens; the productivity and fruit quality under plastic; the long term sustainability on soil. Other plastic tunnel types have to be investigated, as one of the major limitations for this technology are the costs.

The new project in Netherland will be on retractable roofs, with questions like : return of investment, fruit tree canker, image for agro tourism.

• Exclusion netting

On apples, nets may be used against codling moth, oriental moth and also Mediterranean fruit fly and Halyomorpha halys. At IRTA (Spain), the use of insecticides could significantly be reduced in a netted and closed orchard, but aphids (grey and woolly) have to be controlled. Work was done in two different ways : i) by releasing three types of *Coccinelidae*, but it was not sufficient ; ii) by having an autumn action by keeping the nets closed to avoid that grey aphids come back to the orchard combined with two kaolin spraying and introducing two parasitoids against woolly aphids. In the second case, a biological control of the aphids could be achieved in one trial. Furthermore, other common pests like San José scale and leafrollers may increase in exclusion netting orchards.

At Laimburg (Italy), after 8 years trials combining hail nets, single row with downside open or closed, the percentage of affected fruits at harvest is significantly reduced compared to the untreated control, but different from one case to another, with good results ($\leq 2 \%$) and bad results (around 15 % and even 36 %).

To help the pollinisation, bumble bees and wild bees are placed into the netted orchards.

On cherries, to protect against *Drosophila suzukii*, the combination of exclusion nets and spinosad treatments reachs a 100 % control (Agroscope – Switzerland).

VIII. Plant resistance inducers

Extracts or chemical compounds inducing resistance are often referred to "plant activators", "inducers" or, if derived from micro-organisms, "elicitors". Classical inducers do not have a direct impact on pathogens, which clearly distinguishes them from fungicides. In France (INRA, Ctifl and other partners), a project called PEPS, was organised in three Work packages : 1) screening in lab by molecular analyses the plant resistance inducer potential of different compounds 2) evaluation of their performances in apple orchards when applied weekly on the scab primary contaminations or close to harvest against *Gloeosporium* 3) study in controlled condition the factors affecting their efficacy. Two compounds, a K-phoshonate and foliar fertilizers gave interesting results on apple scab, but not on storage diseases. The problem is the number of applications and the amount of phosphonate residues on fruits. The next step will be to use these types of products depending of the pathogen risks.

IX. Semio-chemicals

To increase the efficacy of thrips chemical control, Pcfruit (Belgium) tested attractive additives. There are three types : 1) gustatory stimulants (stimulating feeding, making sprayed surface more preferred) ; 2) attractants (volatile compounds making olfactory orientation possible) ; 3) repellents (volatile compounds to discourage insects to come on the plant). In laboratory condition and field, a gustatory stimulant, increased efficacy of the chemical insecticide by 20 to 30 %.

On Drosophila suzukii, insecticides were improved with a feeding enhancer. The best was composed of Baker's yeast and brown sugar.

In the UK, large field trials are going on, testing the combination of semio-chemicals to attract hoverflies. The name of the commercial predator lure is "Magipal".

X. Spray applications and environment protection

KOB (Germany) is partner of a BLE project, called Corona PRO. The aim of the project is to find a method to optimise the use of pesticides. Therefore orchards are scanned by **drones** to record gaps in the orchard and the surface structure of individual tees. These data generate individual applications maps. In combination with computer controlled sprayers, these new technology could reduce the output of pesticides.

Because of the high water density in the region "Altes Land", Jork (Germany) is testing different sprayers to reduce drift. In case of a **tunnel sprayer** compared to an axial fan sprayer, the reduction of pesticides is up to 20 % due to the recycling technique. Furthermore, the double-row sprayers increase the performance by 30 %. But there are some negative points : the maximum height and row spacing is 3.7 m ; it's not usable with hail nets or roofs ; the time to set-up and clean is longer and finally the handling is more difficult, because of the big seize. However, growers must be convinced of the biological efficacy and the investment.

Wageningen (Netherland) is studying several ways to improve the applications of pesticides while reducing the emission of crop protection products and achieving a uniform crop coverage. The methods are : i) regulate wind speed and spray direction ii) blow and spray trees from both sides at the same time iii) adjust spraying liquid by nozzle position iv) the nozzle choice v) adapt spraying to crop vi) reduce spray volume. Despite large variation, there are significant differences between techniques and adjustments, but the performances of the sprayers will come from the adaption of our orchards to the sprayers.

XI. System approach where different techniques to reduce the use of pesticides are combined

In France, Ctifl coordinated a long term (6 years), multi-location and multi-factors apple orchards network. During the seasons, several techniques to reduce the use of pesticides were combined (ECOPHYTO modality) and compared to a reference system (called BASE). In terms of treatment frequency index reduction, to most important (> 75 % reduction) were obtained with resistant varieties combined with mating disruption or enclosure netting and the use of biological control insecticides and "alterntive" fungicides, or when treatment doses were adapted to the vegetation volume. On apple scab sensitive varieties, the most important reduction (> 50 %) was achieved with rain covers combined with mating disruption or Alt'Carpo nets. The adaption of treatment doses gave also good results. The "zero" residues were achieved with organic production systems (behalf cupper detection), scab resistance varieties with low codling moth pressure and no storage diseases treatments, rain cover on Gala and Alt'Carpo (with a low codling moth pressure), and also systems with doses adjustments but without storage diseases treatments.

In 2016, started an **Interreg Project** "Residue – poor fruit production – model orchards for improvement of integrated crop protection. Kob (Germany) is leading the project and Agroscope (Switzerland) is one of the partners. The goal is the construction of demonstration orchards in which combinations of promising measures are studied. The project is running up until 2019.

n°	EUFRUIT Partner	Fruit species	Pest & Diseases & other uses	Technology	Description	Short results
9	Laimburg	apples	pests	biodiversity		Gap : little knowledge about occurrence and biology of many natural predators
18	UoG	pomefruits	general	biodiversity	effects of pest control products on earwigs	recommandation on insecticides which should be avoided
21	INRA	fruits	pests	biodiversity	multi-species hedgerows	Pear project (1995 - 2005) : three main principales. 1) ban plants hosting quarantine or key pests an diseases of the orchard and surrounding crops. 2) selection of plants hosting a rich and/or abundant natural enemy complex. 3) provide natural enemies with habitat and food ressources (pollen, nectar, alternative prey) all year round.
1	Aarhus University	apples	winter moths (Operophera brumata) & other caterpilllars	biological control	ants	despite feeding the ants with sugar, increased aphid damage was seen.
2	Pcfruit	strawberry	thrips	biological control	entomopathogenic fungi	less repercussions on beneficial arthropods and fruit residues
2	Pcfruit	apples & pears	Fire Blight	biological control	bumble bees to transfer the BCO (entomovectoring)	positive greenhouse results to establish BCO on flower stigma and flower bottom, but limited flower visitation in pears and apples. Attractant (mixture of terpenes) did not increase the visitation rates. Other idea : combine BCO spraying followed by BCO distribution with insects (bumble bees, honeybees, solitary bees)
2	Pcfruit	apples & pears	Fire Blight	biological control	apple & pear flower microbiomes	Aim : find candidate antagonists of Erwinia amylovora
2	Pcfruit	apples	storage diseases	biological control	by nebulisation at postharvest	computational fluid dynamics (CFD) model for the distribution of the biocontrol agent. Good results with this technique.

List of action to reduce the use of pesticides and limit the risk to have residues on fruits and environment contaminations, presented in the scan reports (see Annex).

2	Pcfruit	strawberry	thrips	biological control	guidelines for the use of BCA on different climatic conditions	
2	Pcfruit	apple	aphids	biological control	banker plants & mass reared parasitoïds	inventory of orcahrds to get an overwiew on banker plants and the species that could be commercialised
2	Pcfruit	strawberry	thrips	biological control	predatory mites	preventive introduction to reduce the insecticide input
2	Pcfruit	pome & stone fruits	aphids	biological control	mass released parasitoids	successfull control of aphids, but depending on several factors (timing of starting the releases, aphid pressure, climate conditions).
8	Agroscope	pome fruits	scab, storage diseases	biological control	antagonistic yeast	screening in laboratory condition : strong anatgonstic. Formulated test product. Field testing : reduction of storage rot in combination with other fungicides.
18	UoG	cherries	spider mites	biological control	predatory mites	predator introduction at a rate of one sachet per 5 trees seems to be a potential tool for spider mite control.
20	UNIBO	fruits	pests	biological control	Bacillus thuringiensis ; Serratia ; Pseudomonas entomophila ; Burkholderia ; Chromobacterium , Xenorhabdus ; Photorhabdus luminiscens / nemtodes ; Metarhizium anisopliae	Photorhabdus luminiscens has been succesfully used to control Drosophila suzukii in cherry.
20	UNIBO	fruits	bacteria	biological control	cyclolipopeptides in Bacillus spp. ; phenolics in Pseudomonas fluorescens ; pseudopeptides in Pantoea agglomerans and vagans ; Trichoderma harzianum	bacterial antagonists and lytic bacteriophages against Fire blight, Xantomonas, Pseudomonas. Lactic acid bacteria are very promising.
8	Agroscope	pome fruits	Fire Blight	biological control, natural substances	yeasts, acid clay (Mycosin), potassium aluminium sulphate (LMA)	2018 : the weather during blom was highly favorable

4	Jork	apples	weeds	chemical strategy	soil active herbicides in winter or in spring on the tree strip / repeated in summer and after post-harvest	Aim : reduce the use of glyphosate and other herbicides. Costs evaluation.
1	Aarhus University	apples	scab	cultural practices	prophylaxis : triggering ascospores release from overwintering leaves	up to 70 % of the spores were released during a dry period, but high water volumes were necessary. Different ways to apply the water (sprinkler, water wagon,). Big droplets and 1,6 mm rain. 2-4 periods during spring. To small effect. 4 year study.
20	UNIBO	fruits	pests & diseases	cultural practices	irrigation, fertilization, use of bio-regulators, pruning, prophylaxis	Avoid all kind of excess. Exemple : Drosophila suzukii. Clean harvest strategies, fruit removal, edge rows management, use of consociation with soya bean inside the orchards.
2	Pcfruit	fruits		decision tools	warnings system for fruit growers and advisory organisations	infection risk of diseases like scab, powdery mildew or pests and phenological development
2	Pcfruit	apples & pears	wooly aphids & psylla	decision tools	earwig management tool & guidelines	Aim : to take into account the side-effects of pesticides on earwigs population. Results : a reduction of pear suker related residues on pears.
2	Pcfruit	cherries	Drosophila suzukii	decision tools	monitoring guidelines & phenology model	It reduces the amount of sprays when the pest is not yet present in the plot.
2	Pcfruit	pears	pear psylla	decision tools	phenology of the pest and beneficial arthropods	used for an improved warning system and advice in the extension service. Transfer to growers.
2	Pcfruit	apples	scab	decision tools	technique to determine the potential ascospore inoculum for an orchard at the beginning of the seazon	better organization of the treatments
2	Pcfruit	apples	scab	decision tools	technique to follow up the ascopore relaese in an orcahrd	this may be helpful to determine the star and the end of the ascospore season and can lead to reduce the treaments at the beginning and at the end of the scab ascopore season.

2	Pcfruit	strawberry	Botrytis, Powdery mildew	decision tools	models	ongoing research
2	Pcfruit	strawberry	pests	decision tools	guidelines for monitoring	thresholds, identification help, methodology. Knowledge of the population size and phenology, leads to optimized treatments.
2	Pcfruit	strawberry	thrips	decision tools	guidelines for curative sprays	situation when the crop system is less favorable for predatory mite introductionor when the control by predatory mites is insufficient
7	IRTA	fruits	general	decision tools	DOSA3D	calculates the dose taking into account the tree dimensions and the leaf density. System for treatment management.
8	Agroscope	pome & stone fruits	general	decision tools	webpages with disease and pest modeling and monitoring information	for exemple : apple scab, pest monitroing data, crop stage data, insect pest forecasting, fireblight forecasting)
2	Pcfruit	pears	Fire Blight	detection	drones	only 52-54 % accurancy.
8	Agroscope	apples	???	genetics	varieties	trials done under a standard IP plant protection strategy and a low input strategy with reduced use of synthetic pesticides
9	Laimburg	apples	scab	genetics	varietes & rootstocks	challenges in research for Organic Farming (OF). Problem with resistant varieties : other diseases become prominent, resistance breakdown.
4	Jork	apples	scab	natural substances	ion salt form of pelargonic acid	greenhouse experiments and open field

9	Laimburg	apples	apple sawfly	natural substances	Quassia amara extracts	
9	Laimburg	fruits	general	natural substances	natural and naturally derived substances	
10	Bucharest	apples	scab & powdery mildew	natural substances	potassium bicarbonate	Aim : reduce the use of copper, complete the sulphur treatments. Results of a 3 years trial (2014-2016) : potassium bicarbonate + sulphur = potassium bicarbonate + potassium silicate. No symptoms of phytotoxicity.
12	Lithuania	fruits	general	natural substances	plants	they are a valuable source of bioactive compounds : terpenes, phenolic compounds, essential oils, alkoloids. Obtained by extraction process. Results from a study in laboratory conditions : Thymus vulgaris, Coriandrum sativum essential oils / Alternaria ssp., F. graminearum.
5	Wageningen	apples	apple sawfly	physical method	plastic white traps	
4	Jork	apples	weeds	physical method	hot water treatment (98°C)	high costs
9	Laimburg	apples	storage diseases	physical method	hot water treatment	
19	КОВ	fruits	weeds	physical method	hot water treatment (98°C)	technialy (water quantity and time) and economically not satisfaying. New topic : hot steam.
4	Jork	apples	weeds	physical method	mechanical weeding (roll hoe, Naturagriff, Krümler Ladurner Modell 7)	Important points : work on the tree interspace, speed, massive weed infestation, wet soil conditions
7	IRTA	fruits	weeds	physical method	mechanical weeding	alternative methods applicable in conventional and organic orchards
8	Agroscope	fruits	weeds	physical method	mechanical weeding	becoming more and more important in integrated production, due to political pressure on herbicides such as glyphosate
8	Agroscope	apples	thinning	physical method	mechanical thinning	used by organic farmers
9	Laimburg	apples	weeds	physical method	tilling & mulching	tillage in spring (nitrogen mobilization), a light cover of the tree row with the cut vegetation, new machinery that removes weeds by brushing
9	Laimburg	apples	thinning	physical method	mechanical thinning	

1	Aarhus University	pears	scab	physical method	rain roofs (1,6 m large)	reduced light levels (30 %), but no detrimental effects on yield, fruit size, color and fruit quality. 3 years study.
2	Pcfruit	small fruits & cherries + grapes	Drosophila suzukii	physical method	nets (whole plots or individual rows)	reduces the amount of sprays to nearly zero
3	Ctifl	apples	scab	physical method	rain roofs (Filpack and Voen)	efficacy against scab, but incidence on yield. Irrigation must be adopted. Devlopement of powdery mildew.
5	Wageningen	apples	scab	physical method	retractable rain roofs	new project in the Netherland.
7	IRTA	fruits	pests	physical method	exclusion nets	avoid damages of codling moth, leafrollers, Mediterranean fly. Promote biologicial control against aphids. Against also Halyomorpha halys.
8	Agroscope	cherries	Drosophila suzukii	physical method	exclusion nets	until 2015, rarely implemented because of jugh costs. Now used in combination with spinosad to reach 100 % control.
8	Agroscope	pome fruits	codling moth	physical method	exclusion nets	only used by pioneer farmers. Bumble bees and wild bees are placed to ensure pollination.
9	Laimburg	apples	scab	physical method	rain roofs	agronomic + carbon footprint
9	Laimburg	apples	codling moth	physical method	exclusion nets	agronomic + carbon footprint
20	UNIBO	fruits	pests & diseases	physical method	plastic tunnel & nets	Incidences on micro-climate inside orchards (t°, relative humidity, light quality and intensity, leaf wetness), but also on plant development, physiological response of the plant against pests and diseases, and on the pathogen virulence. Successful practical applications : pear / codling moth ; stone fruits / Drosophila ; apple, pears, stone fruits / Halyommorpha alays ; kiwifruit / Pseudomonas syringae pv. actinidae.
3	Ctifl	apples	scab, storage diseases	Plant resistance inducers	elicitors	large lab screening. 5 elicitors. Phosphonates gave the best results in orchards. High residues level. Interesting under rain roofs to reduce apple scab pressure.
2	Pcfruit	strawberry	thrips	Semio-chemicals	attractive additivies	higher spray efficacy and less applications
2	Pcfruit	cherries	Drosophila suzukii	Semio-chemicals	attractive additivies/baits	insecticide efficacy can be significantly increased by adding additives.

2	Pcfruit	cherries	Drosophila suzukii	Semio-chemicals	attractive additivies/baits	Is it it possible to reduce the insecticide dosis ?
2	Pcfruit	cherries	Drosophila suzukii	Semio-chemicals	attractive additivies/baits	Is it possible to practice "Attract and kill" ?
8	Agroscope	pome fruits	codling moth	Semio-chemicals	mating disruption	50 % of the apple growers of the Lake of Constance area. The combination of mating disruption and granulosis virus is used by 10 % of the organic producers.
18	UoG	pomefruits	general	Semio-chemicals	attractant for beneficial insects	a combination of semiochemicals to attract hoverflies. A commercial predator lure "Magipal".
19	КОВ	apples	general	spray application	drone to pilote application	BLE-Project : Corona PRO. Model and demonstration orchards to reduce the application of pesticides. Orchards are scanned by drones. Gaps are recorded and serve to generate individual applications maps; Combination with computer controlled sprayers.
2	Pcfruit	fruits	general	spray application	movable wall to check the accuracy of the sprayer	in 2017, only 1 sprayer of 160 tested was correct.
2	Pcfruit	fruits	general	spray application	EVA app to plan the applications and set up the spraying schedule	155 growers in 2017 ; 135 in 2018. Pcfruit = technical assistance
4	Jork	apples	general	spray application	tunnel technique	significant pesticide saving and drift reduction. More investigation is neede for the equipment.
5	Wageningen	fruits	general	spray application	performances	Aim : reduce the emission of crop protection products. Achieve a uniform crop coverage. Method : crop dependent spraying based on crop volume or crop row volume dosage + adjusting spray parameters such as air speed and nozzle type
2	Pcfruit	cherries	Drosophila suzukii	system approach (combination of methods)	mass trapping ; repellents and deterrents ; Push and Pull	goal : no insecticides
2	Pcfruit	apples, pears, strawberry	general	system approach (combination of methods)	treatment schedule + different findings to achieve the "zero residues" level	treatment schedule are based on larger preharvest interval to avoid residues.

3	Ctifl	apples	general	system approach (combination of methods)	scab management, models, prophylaxis, biocontrol products, exlusing nets, biodiversity	6 years national project.
4	Jork	apples	root sucker	system approach (combination of methods)	pelargonic acid (8%) in summer combined to post- harvest glyphosate application or mechanical weed management	Aim : alternatives to glufosinate
8	Agroscope	apples	general	system approach (combination of methods)	residue-poor fruit production (apples, cherries, pears)	Agroscope long-terme trial : adapt fungal diseases strategies, insect exclusion netting, mating disruption, mulching leaves to reduce scab inoculum, modern storage techniques. The low-residue strategy is not profitable without a price premium compared to integrated production.
8	Agroscope	cherries	Pseudomonas	system approach (combination of methods)	acid clay, white stem painting and summer pruning	New trial.
9	Laimburg	apples	codling moth	system approach (combination of methods)	mating disruption ; granolosis virus ; entomophagous nematodes	
9	Laimburg	apples	scab	system approach (combination of methods)	less susceptible varieties, reduction of ascospore concentraton, organic farming products	copper, sulphur, lime sulphur, carbonates & forecasting models. But copper accumulates in the soils.
18	UoG	cherries	Drosophila suzukii	system approach (combination of methods)	dry bait ; entompathogenic fungi : repellents and oviposition deterrents ; push pull	
19	КОВ		general	system approach (combination of methods)	nets, roofs	Project (december 2015 to december 2019) : 2 ha model orchard

19	КОВ	cherries	Drosophila suzukii	system approach (combination of methods)	alternative methods to	A three component strategy seems to be the best : insects nets, hygiene and insecticides.
----	-----	----------	--------------------	--	------------------------	---

Summary for EIP dissemination

Project title: EUFRUIT: European Fruit Network

Keywords: fruits, pesticide residues, alternative products and techniques, environmental friendly crop protection

Summary:

The synthesis report 2018 of WP3 provides information from 14 European institutes, partner of the EUFRUIT project and members of the EUFRIN WG "Sustainable fruit production to minimize residues", on on-going research and practices to reduce the use of pesticides and limit the risk to have residues on fruits and in the environment.

The choice has been made to illustrate the state of the art by examples on several topics like :

- Biodiversity how to preserve beneficial insects and how to provide natural enemies with habitat and food
- Biological control like entomopathogenic fungi, predatory mites, antagonistic yeasts, microorganisms, peptides
- Chemical strategies to reduce the use of pesticides
- Cultural practices
- Decision tools
- Genetics
- Natural substances
- Physical methods to control weeds, but also to protect against fungi and insects with hot water, rain covers and nets, or to regulate yield by mechanical thinning
- Plant resistance inducers (PRI)
- Semio-chemicals
- innovative spray applications to protect environment
- a system approach where different techniques are combined to reduce pesticides,

The first part of the report is a selection of presentation discussed during the IEG meeting. The annex provides all the scan documents written by the project partners, where more details on a specific technique or strategy can be find.

The goal is to share knowledge coming from research and to analyse what is already used in practice by the growers and technicians, what are the hurdles to develop it on a larger scale, what can be communicate to the whole food chain, what is acceptable by the growers and the society. Furthermore the synthesis reports aims to point out where gaps exist and where more research is needed.

Contact information

EIG editor: ZAVAGLI Franziska, Ctifl, Centre de Lanxade, 28 route des Nébouts, 24130 Prigonrieux, zavagli@ctifl.fr, 00/33.5.53.58.13.10 Project coordinator: Michelle H. Williams; Aarhus University, Department of Food Science, Kirstinebjergvej 10, 5792 Aarslev, Denmark; mw@food.au.dk; +45 25170049 Contributing project partners: AU, Pcfruit, Ctifl, OVA, StDLO, IRTA, Agroscope, Laimburg, USAMV, LRCAF, FRESHFEL, UoG, UNIBO, INRA

Name	Contact person	Address	Email	Phone	Туре
AU	Marianne BERTELSEN	Kirstinebjergvej 10 5792 Aarslev (Denmark)	Marianne.Bertelsen@food.au.dk	0045 8715 8328	Research institute
Pcfruit	Wendy VAN HEMELRIJCK	Fruittuinweg 1 3800 Sint-Truiden (Belgium)	wendy.vanhemelrijck@pcfruit.be	0032 11 69 71 20	Research institute
Ctifl	Franziska ZAVAGLI	Centre de Lanxade, 28 route des Nébouts, 24130 Prigonrieux (France)	zavagli@ctifl.fr	00/33/5.53.58.00.05	Research institute
OVA	Hinrich HOLTHUSEN	Dep. Plant Protection and Diagnostics. Moorende 53 - 21635 Jork (Germany)	hinrich.holthusen@lwk- niedersachsen.de	+49 4162 6016-131	Research institute
StDLO	Marcel WENNEKER	Lingewal 1, 6668 LA, Randwijk. (NL)	marcel.wenneker@wur.nl	00/31/488473745	Research institute
StDLO	Peter Frans DE JONG	Lingewal 1, 6668 LA, Randwijk. (NL)	peterfrans.dejong@wur.nl	00/31/488473745	Research institute
IRTA	Mariano VILAJELIU	IRTA-MAS BADIA. Canet de la Tallada. 17134 LA TALLADA D'EMPORDÀ (Spain)	mariano.vilajeliu@irta.cat	00/34/972.78.02.75	Research institute
IRTA	Jordi CABREFIGA	IRTA-MAS BADIA. Canet de la Tallada. 17134 LA TALLADA D'EMPORDÀ (Spain	jordi.cabrefiga@gmail.com	<mark>????</mark>	Research institute
Agroscope	Andreas NAEF	Federal Department of Economic Affairs, Education and Research EAER – Agroscope. Schloss 1. 8820 Wädenswil (Switzerland)	andreas.naef@agroscope.admin.ch	+41 58 460 62 57	Research institute
Laimburg	Markus Kelderer	VZ-Laimburg, Vadena, Laimburg 6 I- 39040 Ora (Italy)	Markus.Kelderer@provinz.bz.it	+39 0471 969662	Research institute
USAMV	Beatrice Michaela IACOMI	59 Mărăști bv.; 011464 Bucharest (Rumania)	b.iacomi@yahoo.fr	0040/21/3182564	Research institute

USAMV	Ana Cornelia BUTCARU	59 Mărăști bv.; 011464 Bucharest (Rumania)	anabutcaru@gmail.com	0040/21/3182564	Research institute
USAMV	Elena MARDARE	59 Mărăști bv.; 011464 Bucharest (Rumania)	elenamardare184@yahoo.com	<u>????</u>	Research institute
LRCAF	Alma VALIUSKAITE	Instituto al. 1; Akademija; LT- 58344, Kedainiai distr. Lithuania	a.valiuskaite@lsdi.lt	+37037555217	Research institute
FRESHFEL	Philippe BINARD	Rue de Trèves 49-51 1040 Brussels (Belgium)	philippe@freshfel.org	+32 2 777 15 80	NGO or other
FRESHFEL	Helene DERUWE	Rue de Trèves 49-51 1040 Brussels (Belgium)	helene@freshfel.org	+32 2 777 15 80	NGO or other
UoG		Natural Resources Institute, UoG at Medway, Chatham Maritime, Kent ME4 4TB (UK)		00/44/1645 883304	Research institute
UNIBO	Francesco SPINELLI	DipSA – Dept. Ag. Sciences, V.le Fanin 44, 40127 Bologna. (Italy)	Francesco.spinelli3@unibo.it	+39 051 2088704	Research institute
INRA		Unité Ecodéveloppement – INRA PACA. Domaine Saint Paul, Site Agroparc. CS 40 509 – 84914 Avignon Cedex 9 (France)	·	0033-432722574	Research institute

Project period:	2016 - 2019					
Project status:	Ongoing					
Funded by:	Horizon 2020					
Total budget:	€1.8m					
Geographical regions:						
Country	Regions (NUTS 3 REGIONS)					
Denmark	DK011 (Copenhagen), DK012 (Copenhagen and its environs), DK013 (North Zealand), DK014 (Bornholm), DK021 (East Zealand), DK022 (West- and South Zealand), DK031 (Funen), DK032 (South Jutland), DK041 (West Jutland), DK042 (East Jutland), DK050 (North Jutland).					
Belgium	BE211 Arr. Antwerpen - BE212 Arr. Mechelen - BE213 Arr. Turnhout- BE221 Arr. Hasselt - BE222 Arr. Maaseik - BE223 Arr. Tongeren - BE231 Arr. Aalst - BE232 Arr. Dendermonde - BE233 Arr. Eeklo - BE234 Arr. Gent - BE235 Arr. Oudenaarde - BE236 Arr. Sint-Niklaas - BE241 Arr. Halle-Vilvoorde - BE242 Arr. Leuven - BE251 Arr. Brugge - BE252 Arr. Diksmuide - BE253 Arr. leper - BE254 Arr. Kortrijk - BE255 Arr. Oostende - BE256 Arr. Roeselare - BE257 Arr. Tielt - BE258 Arr. Veurne - BE310 Arr. Nivelles - BE331 Arr. Huy - BE332 Arr. Liège - BE334 Arr. Waremme - BE335 Verviers					
France	FR211 Ardennes, FR241 Cher, FR244 Indre-et-Loire, FR246 Loiret, FR301 Nord, FR302 Pas-de-Calais, FR411 Meurthe-et-Moselle, FR412 Meuse, FR413 Moselle, FR414 Vosges, FR421 Bas-Rhin, FR422 Haut-Rhin, FR432 Jura, FR433 Haute-Saône, FR511 Loire-Atlantique, FR512 Maine-et-Loire, FR514 Sarthe, FR515 Vendée, FR532 Charente-Maritime, FR533 Deux-Sèvres, FR534 Vienne, FR611 Dordogne, FR614 Lot-et-Garonne, FR615 Pyrénées-Atlantiques, FR623 Haute-Garonne, FR628 Tarn-et-Garonne, FR631 Corrèze, FR632 Creuse, FR633 Haute-Vienne, FR712 Ardèche, FR713 Drôme, FR714 Isère, FR716 Rhône, FR717 Savoie, FR718 Haute-Savoie, FR721 Allier, FR722 Cantal, FR723 Haute-Loire, FR811 Aude, FR812 Gard, FR813 Hérault, FR815 Pyrénées-Orientales, FR821 Alpes-de-Haute-Provence, FR822 Hautes-Alpes, FR823 Alpes-Maritimes, FR824 Bouches-du-Rhône, FR825 Var, FR826 Vaucluse, FR831 Corse-du-Sud, FR832 Haute-Corse					
Germany	DE600 Hamburg; DE932 Cuxhaven; DE933 Harburg; DE939 Stade; DEF09 Pinneberg, DE9 (Niedersachsen); DE8 (Mecklenburg-Vorpommern); DEF0 (Schleswig-Holstein); DEE0 (Sachsen-Anhalt); DEA (Nordrhein-Westfalen)					
Netherlands	NL230 Flevoland; NL310 Utrecht; NL321 Kop van Noord-Holland; NL338 Oost-Zuid-Holland; NL341 Zeeuwsch-Vlaanderen; NL342 Overig Zeeland; NL411 West-Noord-Brabant; NL412 Midden-Noord-Brabant; NL422 Midden-Limburg; NL423 Zuid-Limburg.					
Spain	ES 512 Girona, ES513 Lleida					
Switzerland	CH011 Vaud, CH012 Valais, CH021 Bern, CH022 Fribourg, CH023 Solothurn, CH024 Neuchâtel, CH025 Jura, CH032 Basel-Landschaft, CH033 Aargau, CH040 Zürich, CH052 Schaffhausen, CH055 St. Gallen, CH056 Graubünden, CH057 Thurgau, CH061 Luzern, CH063 Schwyz, CH066 Zug, CH070 Ticino					
Italy	ITH10 Bozen-Bolzano, ITH54 Modena, ITH55 Ferrara, ITH57 Ravenna, ITH58 Forlì-Cesena, ITH59 Rimini, ITD20 Trentino-Alto Adige					
Romania	RO111 Bihor, RO112 Bistrița-Năsăud, RO113 Cluj, RO114 Maramureș, RO115 Satu Mare, RO116 Sălaj, RO121 Alba, RO122 Brașov, RO123 Covasna, RO124 Harghita, RO125 Mureș, RO126 Sibiu, RO211 Bacău, RO212 Botoșani, RO213 Iași, RO214 Neamț, RO215 Suceava, RO216 Vaslui, RO221 Brăila,					

	RO222 Buzău, RO223 Constanța, RO224 Galați, RO225 Tulcea, RO226 Vrancea, RO311 Argeș, RO312 Călărași, RO313 Dâmbovița, RO314 Giurgiu, RO315 Ialomița, RO316 Prahova, RO317 Telorman, RO321 București, RO322 Ilfov, RO411 Dolj, RO412 Gorj, RO413 Mehedinți, RO414 Olt, RO415 Vâlcea, RO421 Arad, RO422 Caraș-Severin, RO423 Hunedoara, RO424 Timiș
Lithuania	LT001 Alytaus apskritis, LT002 Kauno apskritis, LT003 Klaipėdos apskritis, LT004 Marijampolės apskritis, LT005 Panevėžio apskritis, LT006 Šiaulių apskritis, LT007 Tauragės apskritis, LT008 Telšių apskritis, LT009 Utenos apskritis, LT00A Vilniaus apskritis
UK	UKG11 Herefordshire, UKG12, Worcestershire, UKH12 Cambridgeshire, UKH16 North and West Norfolk, UKH17 Breckland and South Norfolk, UKJ22 East Sussex, UKJ35 South Hampshire, UKJ36 Central Hampshire, UKJ37 North Hamphshire, UKJ41 Medway, UKJ43 Kent Thames Gateway, UKJ44 East Kent, UKJ45 Mid Kent, UKJ46 West Kent
Sweden	SE224 Skåne län, SE123 Östergötlands län, SE221 Blekinge län, SE213 Kalmar, SE231 Halland, SE232 Västra Götaland
Project web page:	www.eufrin.org

Annex: Scanning reports

List of the scanning reports : 20 documents (PDF file joint)

- Aarhus University (DK)
- Pcfruit (BE)
- Ctifl (F)
- OVA Jork (DE)
- St DLO Wageningen (NL)
- IRTA (ES)
- Agroscope (CH))
- Laimburg (IT)
- USAMV (RO)
- LRCAF (LT)
- UoG (UK)
- KOB
- UNIBO (IT)
- INRA (F)